Small-quantity lipid-based nutrient supplements, together with malaria and diarrhea treatment, improve growth and development in young Burkinabe children

Hess SY1, Abbeddou S1, Yakes Jimenez E2, Somé WJ1, 3, Prado E1, Ouédraogo ZP3, Guissou R3, Vosti SA1, Ouédraogo JB3, Brown KH1

1University of California Davis, CA, USA; 2University of New Mexico, Albuquerque, NM; 3Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso

Background
Preventive zinc supplementation reduces the incidence of diarrhea and increases growth1-3. The impact of zinc is less certain when provided as fortified food or home fortification products4. The optimal dose of zinc in lipid-based nutrient supplements (SQ-LNS) remains to be determined.

Objectives
To assess the appropriate dose of zinc in SQ-LNS by comparing biochemical and zinc-related functional responses among young children who receive different zinc doses in SQ-LNS or tablets.

Methods
- Community-based, partially double-blind, placebo-controlled, randomized clinical trial in rural Burkina Faso
- Inclusion criteria: 9 mo of age, parental consent
- Exclusion criteria: Hemoglobin (Hb) <50 g/L, weight/length <70% NCHS median, edema, chronic or congenital diseases, history of peanut allergy or anaphylactic reaction
- Cluster randomization of 34 communities to intervention (IC) or non-intervention (NIC) cohort
- Eligible children in IC were randomly assigned by concession to 1 of 4 intervention groups (Figure 1)
- Hemoglobin and rapid diagnostic test for malaria (RDT) at 9 mo
- Length and weight at 9 and 18 mo in both cohorts
- Plasma zinc at 9 and 18 mo in randomly selected subgroup in both cohorts
- Neurobehavioral development at 18 mo in a sub-group (4 grps only)

In intervention groups only:
- Weekly home visits for morbidity surveillance and distribution of LNS and tablets
- Free treatment of reported diarrhea, fever and confirmed malaria

Results

Table 1: Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Age (mo)</th>
<th>Boys (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>3220</td>
<td>9.4 ± 0.4</td>
<td>50.3</td>
</tr>
<tr>
<td>LAZ</td>
<td>-1.21 ± 1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAZ*</td>
<td>-1.42 ± 1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLZ*</td>
<td>-0.99 ± 1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>89 ± 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaria RDT (%) positive</td>
<td>61.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low plasma zinc (<65 µg/dL, %)</td>
<td>35.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methods

- Community-based, partially double-blind, placebo-controlled, randomized clinical trial in rural Burkina Faso
- Inclusion criteria: 9 mo of age, parental consent
- Exclusion criteria: Hemoglobin (Hb) <50 g/L, weight/length <70% NCHS median, edema, chronic or congenital diseases, history of peanut allergy or anaphylactic reaction
- Cluster randomization of 34 communities to intervention (IC) or non-intervention (NIC) cohort
- Eligible children in IC were randomly assigned by concession to 1 of 4 intervention groups (Figure 1)
- Hemoglobin and rapid diagnostic test for malaria (RDT) at 9 mo
- Length and weight at 9 and 18 mo in both cohorts
- Plasma zinc at 9 and 18 mo in randomly selected subgroup in both cohorts
- Neurobehavioral development at 18 mo in a sub-group (4 grps only)

In intervention groups only:
- Weekly home visits for morbidity surveillance and distribution of LNS and tablets
- Free treatment of reported diarrhea, fever and confirmed malaria

References

Conclusion
SQ-LNS along with malaria and diarrhea treatment reduced stunting prevalence from 39% to 29%, decreased wasting and anemia prevalence and resulted in higher motor, language, and personal-social development scores compared with the non-intervention cohort.

Lack of impact on plasma zinc concentration suggests inadequate adherence to zinc tablet and/or inadequate absorption.

Unable to answer original research question on optimal dose of zinc because biochemical and functional responses to zinc were not detected.

This poster is based on research funded by the Bill & Melinda Gates Foundation.